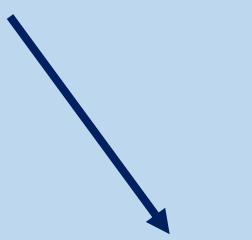


Globally Optimal Synthesis of Minimal Heat Exchanger Networks with Simultanous Equipment Design

Julia Lemos^a, André L.H. Costa^a, Miguel Bagajewicz^b

(a)Universidade do Estado do Rio de Janeiro (b) University of Oklahoma


December 6, 2019

Optimal Heat Exchanger Design (Gonçalves et al., 2016)

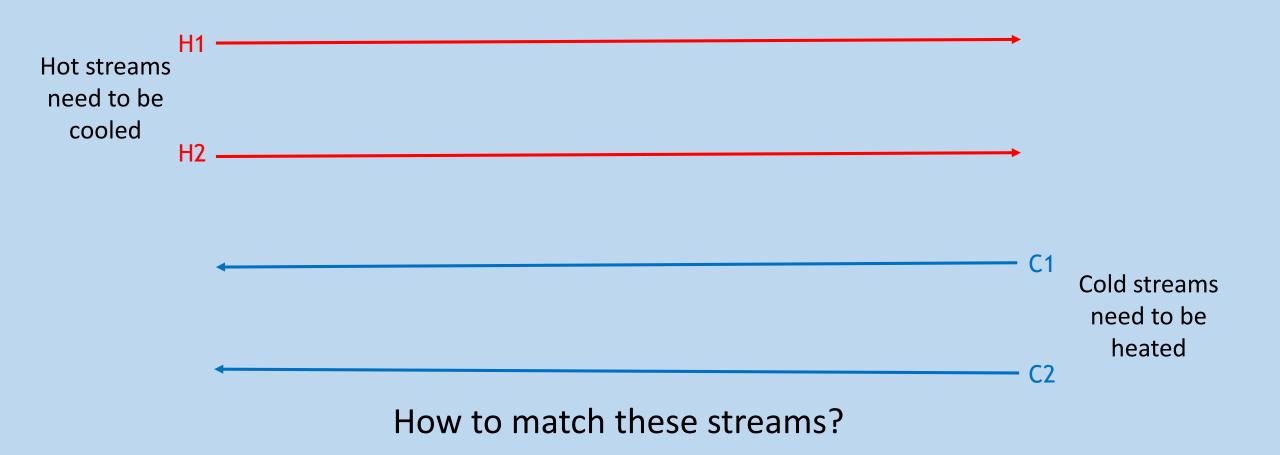
Globally Optimal Synthesis of Minimal Heat Exchanger Networks (Chang et al., submitted)

Globally Optimal Synthesis of Minimal Heat Exchanger Networks with Equipment Design

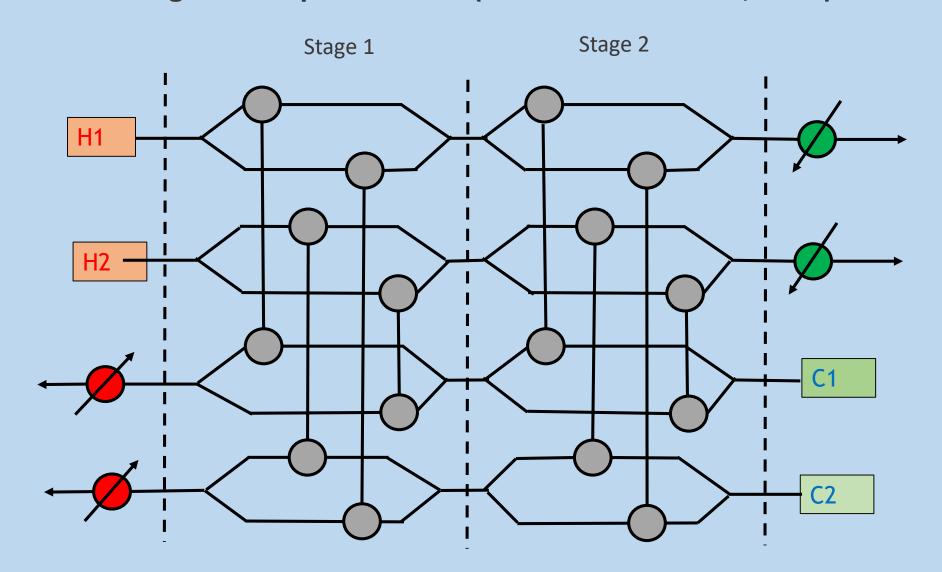
Optimal Heat Exchanger Design

- Design variables (discrete):
- 1. Tube diameter
- 2. Shell diameter
- 3. Number of tube passes
- 4. Tube length
- 5. Pitch ratio
- 6. Layout
- 7. Number of baffle

Written as functions of binary variables All the other model continuous variables can be written using the design variables, hence the binaries


Final model: ILP

WE USE A SET TRIMMING APPROACH


Heat Exchanger Network Synthesis

Stagewise Superstructure (Yee and Grossmann, 1990)

Globally Optimal Synthesis of Minimal Heat Exchanger Networks

Models

PSTR Chang et al.(2020)

Min α — Dummy objective function

s.t.

Synheat constraints (except for area equations)

$$EMAT = EMAT_{min}$$

$$\sum_{i \in HP} \sum_{j \in CP} \sum_{k \in st} z_{i,j,k} + \sum_{i \in HP} zcu_i + \sum_{j \in CP} zhu_j = N$$
 Total number of matches equal to N=NH+NC+NU-1

This model finds a Minimal Structure (without Energy Loops)

Globally Optimal Synthesis of Minimal Heat Exchanger Networks

Models

PEmin/Pemax **Chang et al.(2020)**

Min/Max E

s.t.

$$E = \sum_{j \in CP} qhu_j \qquad EMAT = EMAT_{min} \qquad \hat{E}_{min}^{user} \le E \le \hat{E}_{max}^{user}$$

$$\hat{E}_{min}^{user} \leq E \leq \hat{E}_{max}^{user}$$

$$\{z_{i,j,k} = 1, zhu_j = 1, zcu_i = 1\} \forall (i,j,k) \in MSTR_l$$
 Fixed matches

This model finds Minimum and Maximum Energy Consumption for a fixed Structure

Globally Optimal Synthesis of Minimal Heat Exchanger Networks

Models

PESTR Chang et al.(2020)

Min
$$\alpha$$
 — Dummy objective function

Subject to

$$\widehat{E} = \sum_{j \in CP} qhu_j$$
 Fixed energy

$$EMAT = EMAT_{min}$$

$$\{z_{i,j,k} = 1, zhu_i = 1, zcu_i = 1\} \forall (i,j,k) \in MSTR_l$$
 Fixed matches

This model finds the heat distribution for a given Energy consumption, EMAT minimum and a fixed Structure

Globally Optimal Synthesis of Minimal Heat Exchanger Networks

Models

Min α — Dummy objective function

s.t.

$$EMAT = EMAT_{min}$$

$$\sum_{i \in HP} \sum_{j \in CP} \sum_{k \in st} z_{i,j,k} + \sum_{i \in HP} zcu_i + \sum_{j \in CP} zhu_j = N$$

$$\sum_{i,j,k\in MSTR_{l'}} \left(z_{i,j,k} + zcu_i + zhu_j\right) - \sum_{i,j,k\notin l'} \left(z_{i,j,k} + zcu_i + zhu_j\right) \leq card(MSTR_{l'}) - 1$$

As the MSTR model, this model finds a Minimal Structure (without Energy Loops) excluding previous results

Globally Optimal Synthesis of Minimal Heat Exchanger Networks with Equipment design

Smart Global Search Algorithm

Step 1 – Set *UBTAC* (best solution) = ∞

Step 2 – Solve *PSTR* to obtain a viable *MSTR*

Step 3 – For *MSTR*, solve *PEmin* – obtain E_{min}

Step 4 – For *MSTR*, solve *PEmax* – obtain E_{max}

Step 5 – Apply monotony test:

- Solve PESTR for $E=E_{min}$. Evaluate TAC (TAC_{min})
- Solve PESTR for $E=1.01E_{min}$. Evaluate TAC (TAC_{min}^+)
- Solve PESTR for $E=E_{max}$. Evaluate TAC (TAC_{max})
- Solve PESTR for $E=0.99E_{max}$. Evaluate TAC (TAC_{max}^{-})

EACH EVAUATION IMPLIES

- 1) Obtaining areas
- 2) Calculate TAC

Globally Optimal Synthesis of Minimal Heat Exchanger Networks with Equipment design Smart Global Search Algorithm

Step 6 – If
$$\{TAC_{min}^+ - TAC_{min}\}\{TAC_{max} - TAC_{max}^-\} < 0$$
 – not monotone, go to Step 8

Step 7 – If
$$\{TAC_{min}^+ - TAC_{min}\}\{TAC_{max} - TAC_{max}^-\} > 0$$
 – monotone

- If $\{TAC_{min}^+ TAC_{min}\} > 0$, $TAC = TAC_{min}$, go to **Step 9**
- If $\{TAC_{min}^+ TAC_{min}\}$ < 0, $TAC = TAC_{max}$, go to **Step 9**

Step 8 – Apply Golden Ratio Search to obtain the best *TAC*. Use *PESTR* and then solve the heat exchanger design to each one of the matches, to obtain *TAC* for each point

Step 9 – If $TAC \leq UBTAC$, update UBTAC

Step 10 – Obtain another structure (*PSTRR*), if this is infeasible make N=N-1, if it continues to be infeasible go to **Step 11**, otherwise, go to **Step 3**

Step 11 – *UBTAC* is the global optimum

Globally Optimal Synthesis of Minimal Heat Exchanger Networks with Equipment design

Example data

Stream	τ _{ιν} (°C)	<i>Т_{оит}</i> (°С)	Fcp (kW/°C)	<i>h</i> (kW/m²°C)
H1	159.0	77.0	228.5	0.40
H2	267.0	88.0	20.4	0.30
Н3	343.0	90.0	53.8	0.25
C1	26.0	127.0	93.3	0.15
C2	118.0	265.0	196.1	0.50
CU	20.0	40.0	-	0.53
HU	500.0	499.0	-	0.53

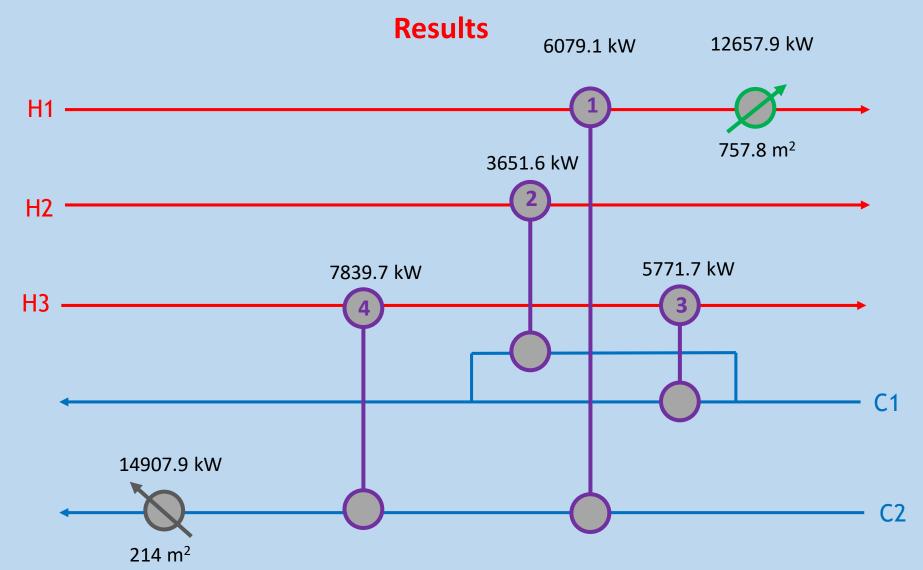
Heat exchanger cost: 25000 + 55 area (\$/y)

Utility cost: 100 qhu + 10 qcu (\$/kWy)

Globally Optimal Synthesis of Minimal Heat Exchanger Networks with Equipment design Results

Example data

Heat exchanger design (Kern model)					
Design variable	Number of alternative				
Shell diameter	0.203, 0.254, 0.305, 0.307, 0.387, 0.438, 0.489, 0.540, 0.591, 0.635, 0.686, 0.737, 0.787, 0.838, 0.889, 0.9398, 0.9906, 1.0668, 1.143, 1.2192, 1.295, 1.3716, 1.448, 1.524, 1.600, 1.676, 1.753, 1.829, 1.981, 2.134, 2.286, 2.438, 2.591, 2.743, 2.896, 3.048				
Tube diameter	0.01905, 0.02540, 0.03175, 0.03810, 0.5080				
Number of tube passes	1, 2, 4, 6				
Pitch ratio	1.25, 1.33, 1.50				
Layout	1 (square), 2 (triangular)				
Length	1.2195, 1.8293, 2.4390, 3.0488, 3.6585, 4.8768, 6.0976				
Number of baffles	1 – 20				


 $\Delta P_{disp} = 100 \ kPA$

Physical properties Cp = 2268 J/kg.K $\rho = 883 \text{ kg/m}^3$ $\mu = 3.55 \cdot 10^{-3} \text{ Pa.s}$ k = 0.1143 W/m.K

Globally Optimal Synthesis of Minimal Heat Exchanger Networks with Equipment design

Globally Optimal Synthesis of Minimal Heat Exchanger Networks with Equipment design Results

	Heat Exchanger				
Variable	1	2	3	4	
Ds	1.295	0.438	0.540	0.9398	
dte	0.0254	0.01905	0.01905	0.01905	
dti	0.0221	0.01575	0.01575	0.01575	
Npt	6	4	4	4	
rp	1.25	1.25	1.25	1.25	
lay	2	2	2	2	
L	4.8768	3.6585	4.8768	3.8565	
Nb	17	20	20	16	
Area	1585.4	120.9	245.2	278.3	
ΔPt	96782	68564.7	95800.7	49123.3	
ΔPs	65603.9	15132.7	43956.5	91458.9	

TAC = 1,943,453 \$/y

Globally Optimal Synthesis of Minimal Heat Exchanger Networks with Equipment design

Conclusions

- We are able to obtain a Globally Optimal Minimal Heat Exchanger
 Network with simultaneous HEX design
- Energy consumption varies from structures obtained using the constant
 U model (Chang et al., submitted)
- The sizes of the exchangers vary.
- THE STRUCTURE CAN VARY
- Other examples must be tested to finish this work